Перевод: с русского на все языки

со всех языков на русский

Математические задачи

  • 1 Математические задачи

    7 + 4 = 11
    sieben plus / und vier ist (устно) / macht (устно) / gleich (письм.) elf
    10 - 4 = 6
    zehn minus / weniger vier ist / macht / gleich sechs
    2 x 3 = 6
    zwei mal drei / multipliziert mit drei ist / macht/gleich sechs
    18: 3 = 6
    achtzehn durch / geteilt / dividiert durch drei ist / macht / gleich sechs
    5² = 25
    fünf hoch zwei (возможно: fünf zum Quadrat) ist 25
    25=5
    (Zweite) Wurzel (Quadratwurzel) aus fünfundzwanzig ist fünf

    Грамматика немецкого языка по новым правилам орфографии и пунктуации > Математические задачи

  • 2 отраслевые задачи оптимального планирования и размещения производства

    1. sectoral planning problems

     

    отраслевые задачи оптимального планирования и размещения производства
    Экономико-математические задачи расчета оптимальных направлений развития отраслей (в ряде случаев — подотраслей и производств). Наибольшее развитие получили в условиях т.н. отраслевой системы управления в бывш. СССР в 70-х — 80-х гг. При этом, как правило, достигался экономический эффект от 5 до 15% (для сопоставимых условий) по сравнению с традиционными методами. Эта работа опиралась на созданные усилиями ЦЭМИ, Института экономики и организации производства СО АН и СОПСа “Основные методические положения оптимизации развития и размещения производства” (1978 г.). Методы решения отраслевых задач применимы (и действительно применяются во многих странах) при планировании деятельности крупных концернов, корпораций, фирм, при государственном программировании и планировании развития экономики. Решением задач отраслевой оптимизации достигаются следующие цели (они по-разному комбинируются в разных задачах): выбор наиболее экономичного варианта строительства, реконструкции и расширения новых предприятий, выбор их территориального размещения, расчет их оптимальных размеров, оптимальная специализация производства и установление кооперационных связей, выбор наиболее совершенной технологии и др. Важная область отраслевой оптимизации — выбор наилучшей номенклатуры выпускаемых изделий с учетом различий экономического эффекта от их применения для различных целей («Задачи оптимизации структуры производства«). В качестве критерия оптимальности в большинстве отраслевых задач выступает минимум затрат на заданный объем конечного продукта рассматриваемой производственной системы. Применяются экономико-математические модели разных типов: динамические и статические, детерминированные и вероятностные, однопродуктовые и многопродуктовые, с дискретными и непрерывными переменными, производственные функции, производственно-транспортные задачи и, наконец, — по характеру отображения хозяйственных связей — матричные и сетевые модели.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > отраслевые задачи оптимального планирования и размещения производства

  • 3 вариационные задачи (конечномерные)

    1. variation problems

     

    вариационные задачи (конечномерные)
    Математические задачи, сводящиеся к поиску наибольших или наименьших значений функций в зависимости от выбора соответствующих аргументов (см. Экстремальные задачи, Экстремум). Решение задачи находится путем дифференцирования функции по аргументу (или аргументам, если их несколько), приравнивания производных нулю и решения полученной системы уравнений. Таким способом решаются многие задачи предельного анализа экономики. Применение В.з. в экономике, в исследовании операций ограничено тем, что: 1) поиск экстремума реально приходится вести не обязательно в точках, где производные обращаются в нуль, а чаще на границе области допустимых решений; 2) нередко применяются функции, для которых производные могут просто не существовать (например, разрывные, кусочно-линейные); 3) само решение системы уравнений, полученной путем дифференцирования основной зависимости, может оказаться не проще, а сложнее, чем поиск экстремума другими методами.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > вариационные задачи (конечномерные)

  • 4 экономико-математические исследования в бывш. СССР и России

    1. economico-mathematical studies in the ex-USSR and russia

     

    экономико-математические исследования в бывш. СССР и России
    (исторический очерк) Э.-м.и. — направление научных исследований, которые ведутся на стыке экономики, математики и кибернетики и имеют основной целью повышение экономической эффективности общественного производства с помощью математического анализа экономических процессов и явлений и основанных на нем методов принятия оптимальных (шире — рациональных) плановых и иных управленческих решений. Они затрагивают также общую проблематику оптимального распределения ресурсов безотносительно к характеру социально-экономического строя. Развитие Э.-м.и. в бывш. СССР надо рассматривать как этап противоречивого процесса развития отечественной экономической науки и часть общего процесса развития мировой экономической науки, в настоящее время во многом практически математизированной. Первым достижением в развитии Э.-м.и. явилась разработка советскими учеными межотраслевого баланса производства и распределения продукции в народном хозяйстве страны за 1923/24 хозяйственный год. В основу методологии их исследования были положены модели воспроизводства К.Маркса, а также модели В.К.Дмитриева. Эта работа нашла международное признание и предвосхитила развитие американским экономистом русского происхождения В.В.Леонтьевым его прославленного метода «затраты-выпуск».. (Впоследствии, после длительного перерыва, вызванного тем, что Сталин потребовал прекратить межотраслевые исследования, они стали широко применяться и в нашей стране под названием метода межотраслевого баланса.) Примерно в это же время советский экономист Г.А.Фельдман представил в Комиссию по составлению первого пятилетнего плана доклад «К теории темпов народного дохода», в котором предложил ряд моделей анализа и планирования синтетических показателей развития экономики. Этим самым были заложены основы теории экономического роста. Другой выдающийся ученый Н.К.Кондратьев разработал теорию долговременных экономических циклов, нашедшую мировое признание. Однако в начале тридцатых годов Э.м.и. в СССР были практически свернуты, а Фельдман, Кондратьев и сотни других советских экономистов были репрессированы, погибли в застенках Гулага. Продолжались лишь единичные, разрозненные исследования. В одном из них, работе Л.В.Канторовича «Математические методы организации и планирования производства» (1939 г.) были впервые изложены принципы новой отрасли математики, которая позднее получила название линейного программирования, а если смотреть шире, то этим были заложены основы фундаментальной для экономики теории оптимального распределения ресурсов. Л.В.Канторович четко сформулировал понятие экономического оптимума и ввел в науку оптимальные, объективно обусловленные оценки — средство решения и анализа оптимизационных задач. Одновременно советский экономист В.В.Новожилов пришел к аналогичным выводам относительно распределения ресурсов. Он выработал понятие оптимального плана народного хозяйства, как такого плана, который требует для заданного объема продукции наименьшей суммы трудовых затрат, и ввел понятия, позволяющие находить этот минимум: в частности, понятие «дифференциальных затрат народного хозяйства по данному продукту», близкое по смыслу к оптимальным оценкам Л.В.Канторовича. Большой вклад в разработку экономико-математических методов внес академик В.С.Немчинов: он создал ряд новых моделей МОБ, в том числе модель экономического района; очень велики его заслуги в области организационного оформления и развития экономико-математического направления советской науки. Он основал первую в стране экономико-математическую лабораторию, впоследствии на ее базе и на базе нескольких других коллективов был создан Центральный экономико-математический институт АН СССР, ныне ЦЭМИ РАН (см.ниже).. В 1965 г. академикам Л.В.Канторовичу, В.С.Немчинову и проф. В.В.Новожилову за научную разработку метода линейного программирования и экономических моделей была присуждена Ленинская премия. В 1975 г. Л.В.Канторович был также удостоен Нобелевской премии по экономике. В 50 — 60-x гг. развернулась широкая работа по составлению отчетных, а затем и плановых МОБ народного хозяйства СССР и отдельных республик. За цикл исследований по разработке методов анализа и планирования межотраслевых связей и отраслевой структуры народного хозяйства, построению плановых и отчетных МОБ академику А.Н.Ефимову (руководитель работы), Э.Ф.Баранову, Л.Я.Берри, Э.Б.Ершову, Ф.Н.Клоцвогу, В.В.Коссову, Л.Е.Минцу, С.С.Шаталину, М.Р.Эйдельману в 1968 г. была присуждена Государственная премия СССР. Развитие Э.-м.и., накопление опыта решения экономико-математических задач, выработка новых теоретических положений и переосмысление многих старых положений экономической науки, вызванное ее соединением с математикой и кибернетикой, позволили в начале 60-х гг. академику Н.П.Федоренко выступить с идеей о необходимости теоретической разработки и поэтапной реализации единой системы оптимального функционирования социалистической экономики (СОФЭ). Стало ясно, что внедрение математических методов в экономические исследования должно приводить и приводит к совершенствованию всей системы экономических знаний, обеспечивает дальнейшую систематизацию, уточнение и развитие основных понятий и категорий науки, усиливает ее действенность, т.е. прежде всего ее влияние на рост эффективности народного хозяйства. С 60-х годов расширилось число научных учреждений, ведущих Э.-м.и., в частности, были созданы Центральный экономико-математический институт АН СССР, Институт экономики и организации промышленного производства СО АН СССР, развернулась подготовка кадров экономистов-математиков и специалистов по экономической кибернетике в МГУ, НГУ, МИНХ им. Плеханова и других вузах страны. Исследования охватили теоретическую разработку проблем оптимального функционирования экономики, системного анализа, а также такие прикладные области как отраслевое перспективное планирование, материально-техническое снабжение, создание математических методов и моделей для автоматизированных систем управления предприятиями и отраслями. На первых этапах возрождения Э.-м.и. в СССР усилия в области моделирования концентрировались на построении макромоделей, отражающих функционирование народного хозяйства страны в целом, а также ряда частных моделей и на развитии соответствующего математического аппарата. Такие попытки имели немалое методологическое значение и способствовали углублению понимания общих вопросов экономико-математического моделироdания (в том числе таких, как адекватность моделей, границы их познавательных возможностей и т.д.). Но скоро стала очевидна ограниченность такого подхода. Концепция СОФЭ стимулировала развитие иного подхода — системного моделирования экономических процессов, были расширены методологические поиски экономических рычагов воздействия на экономику: оптимального ценообразования, платы за использование природных и трудовых ресурсов и т.д. На этой основе начались параллельные разработки ряда систем моделей, из которых наиболее известны многоуровневая система среднесрочного прогнозирования (рук. Б.Н.Михалевский), система моделей для расчетов по определению общих пропорций развития народного хозяйства и согласованию отраслевых и территориальных разрезов плана — СМОТР (рук. Э.Ф.Баранов), система многоступенчатой оптимизации экономики (рук. В.Ф.Пугачев), межотраслевая межрайонная модель (рук. А.Г.Гранберг). Существенно углубилось понимание народнохозяйственного оптимума, роли и места экономических стимулов в его достижении. Наряду с распространенной ранее скалярной оптимизацией в исследованиях стала более активно применяться многокритериальная, лучше учитывающая многосложность условий и обстоятельств решения плановой задачи. Более того, стало меняться общее отношение к оптимизации как универсальному принципу: вместе с ней (но не вместо нее, как иногда можно прочитать) начали разрабатываться методы принятия рациональных (не обязательно оптимальных в строгом смысле этого слова) решений, теория компромисса и неантагонистических игр (Ю.Б.Гермейер) и другие методы, учитывающие не только технико-экономические, но и человеческие факторы: интересы участников процессов принятия и реализации решений. В начале 70-х гг. экономисты-математики провели широкие исследования в области применения программно-целевых методов в планировании и управлении народным хозяйством. Они приняли также активное участие в разработке методики регулярного (раз в пять лет) составления Комплексной программы научно-технического прогресса на очередное двадцатилетие. Впервые в работе такого масштаба при определении общих пропорций развития народного хозяйства на перспективу и решении некоторых частных задач был использован аппарат экономико-математических методов. Началось широкое внедрение программно-целевого метода в практику народнохозяйственного планирования. Были продолжены работы по созданию АСПР — автоматизированной системы плановых расчетов Госплана СССР и Госпланов союзных республик, и в 1977 г. введена в действие ее первая очередь, а в 1985 г. — вторая очередь. Выявились и немалые трудности непосредственного внедрения оптимизационных принципов в практику хозяйствования. В условиях, когда предприятия, объединения, отраслевые министерства были заинтересованы не столько в выявлении производственных резервов, сколько в их сокрытии, чтобы избежать получения напряженных плановых заданий, учитывающих эти резервы, оптимизация не могла найти повсеместную поддержку: ее смысл как раз в выявлении резервов. Поэтому работа по созданию АСУ не всегда давала должные результаты: усилия затрачивались на учет, анализ, расчеты по заработной плате, но не на оптимизацию, т.е. повышение эффективности производства (оптимизационные задачи в большинстве АСУ занимали лишь 2 — 3% общего объема решаемых задач). В результате эффективность производства не росла, а штаты управления увеличивались: создавались отделы АСУ, вычислительные центры. Эти обстоятельства способствовали некоторому спаду экономико-математических исследований к началу 80-х гг. Большой удар по экономико-математическому направлению был нанесен в 1983 г., когда бывший тогда секретарем ЦК КПСС К.У.Черненко обрушился с явно несправедливой и предвзятой критикой на ЦЭМИ АН СССР, после чего институт жестоко пострадал: подвергся реорганизации, был разделен надвое, потом еще раз надвое, из него ушел ряд ведущих ученых. Тем не менее, прошедшие годы ознаменовались серьезными научными и практическими достижениями экономико-математического крыла советской экономической науки. В ряде аспектов, прежде всего теоретических — оно заняло передовые позиции в мировой науке. Например, в области математической экономики и эконометрии (не говоря уже об открытиях Л.В.Канторовича) широко известны советские исследования процессов оптимального экономического роста (В.Л.Макаров, С.М.Мовшович, А.М.Рубинов и др.), ряд моделей экономического равновесия; сделанная еще в 1976 г. В.М.Полтеровичем попытка синтеза теории равновесия и теории экономического роста; работы отечественных ученых в области теории игр, теории группового (социального) выбора и многие другие. В каком-то смысле опережая время, экономисты-математики еще в 70-е гг. приступили к моделированию и изучению таких явлений, приобретших острую актуальность в период перестройки, как «самоусиление дефицита», экономика двух рынков — с фиксированными и гибкими ценами, функционирование экономики в условиях неравновесия. Активно развивается математический аппарат, в частности, такие его разделы, как линейное и нелинейное программирование (Е.Г.Гольштейн), дискретное программирование (А.А.Фридман), теория оптимального управления (Л.С.Понтрягин и его школа), методы прикладного математико-статистического анализа (С.А.Айвазян). За последние годы развернулось широкое использование имитационных методов, являющихся характерной чертой современного этапа развития экономико-математических методов. Хотя сама по себе идея машинной имитации зародилась существенно раньше, ее практическая реализация оказалась возможной именно теперь, когда появились электронные вычислительные машины новых поколений, обеспечивающие прямой диалог человека с машиной. Наконец, новым направлением прикладной работы, синтезирующим достижения в области экономико-математического моделирования и информатики, стала разработка и реализация концепции АРМ (автоматизированного рабочего места плановика и экономиста), а также концепции стендового экспериментирования над экономическими системами (В.Л.Макаров). Начинается (во всяком случае должна начинаться) переориентация Э.-м.и. на изучение путей формирования и эффективного функционирования рынка (особенно переходного процесса — это самостоятельная тема). Тут может быть использован богатый арсенал экономико-математических методов, накопленный не только в нашей стране, но и в странах с развитой рыночной экономикой.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > экономико-математические исследования в бывш. СССР и России

  • 5 внутризаводские задачи оптимального планирования

    1. internal plant problems of optimal planning

     

    внутризаводские задачи оптимального планирования
    Массовая область применения экономико-математических методов в экономике, основа автоматизированных систем управления предприятиями. На начальном этапе применение экономико-математических методов характеризовалось разработкой и решением отдельных планово-экономических задач, например, задач оптимизации формирования производственной программы, использования производственных мощностей и др. В этом отношении накоплен богатый опыт. Основной оптимизационной моделью подсистемы перспективного планирования является модель выбора вариантов проектов реконструкции и нового строительства, решаемая методами целочисленного программирования. Она дополняется алгоритмической сетью расчета остальных показателей плана, производных по отношению к показателям капитальных вложений и объемов продукции по годам перспективного периода (эти показатели получаются непосредственно решением модели). Для подсистемы текущего планирования основной является модель оптимизации производственной программы (чаще всего для решения применяются методы линейного программирования). Эта модель сводится к нахождению таких объемов и номенклатуры выпуска продукции, которые в условиях установленной (госзаказом, заказами частных компаний, или прогнозом рыночной конъюнктуры) потребности и при наличных мощностях обеспечивали бы получение экстремума целевой функции; ею может быть максимизация прибыли, объема реализованной продукции и т.д. Экономико-математические модели календарного планирования предназначены для установления (например, в рамках месячного плана) конкретных сроков запуска деталей в производство; матричные модели материальных и информационных потоков используются для разработки бизнес-планов; модели теории управления запасами помогают регулировать незавершенное производство и контролировать запасы сырья, полуфабрикатов и готовой продукции и т.д. Однако опыт показал, что изолированное решение отдельных задач планирования и управления не позволяет полностью использовать возможности экономико-математических методов и современных вычислительных средств. Поэтому в настоящее время основным путем решения внутризаводских задач оптимального планирования и управления стал путь создания взаимосвязанных комплексов экономико-математических моделей. Они объединяют весь цикл управления — от сбора данных до выработки команд и решений, а также доведения их до исполнителей. Такой комплекс включает модели планирования, оптимизации решений и формирования данных непосредственно в последовательности, соответствующей технологии и графику операций по управлению производством. Часть моделей при этом предназначена для выработки на электронной технике управляющих команд в реальном масштабе времени. (Это относится, например, к управлению технологическими процессами в непрерывном производстве). В зависимости от институциональной формы предприятия (компании) возможны разные критерии оптимальности и разные стимулы производства для руководителей и коллективов этих экономических объектов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > внутризаводские задачи оптимального планирования

  • 6 Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе

    General subject: Algorithm (В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодир)

    Универсальный русско-английский словарь > Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе

  • 7 теория решений

    1. decision theory

     

    теория решений
    статистическая теория принятия решений

    Дисциплина (раздел исследования операций), которая изучает математические (математико-статистические) правила принятия решений, в первую очередь экономических. Иногда это название применяют к более общей теории, которая изучает вообще правила принятия решений (не только основанные на математике), т.е. проблемы психологические, этические и др. Методы принятия решений подразделяются на формализованные и неформализованные, традиционные и современные. Например, к традиционным формализованным методам можно отнести бухгалтерские правила по выписке счетов и другие стандартные процедуры, относящиеся к принятию шаблонных и повторяющихся решений, к современным формализованным методам — методы исследования операций, обработку данных на ЭВМ. Основные понятия данной теории — альтернатива, решение, выбор, полезность, оптимизация и другие — общие для ряда областей и разделов экономико-математических методов, рассматриваемых в словаре. Т.р. исследует модели обоснования и принятия решений и доводит их до прикладных алгоритмов, реализуемых вручную и на ЭВМ. Исследуются методы использования экспертных оценок в подготовке решений, формализованные свойства задачи выбора, методы многокритериальной оптимизации. Математические задачи принятия решений четко разделяются на три направления. Первое — детерминированные задачи, когда считается, что каждое действие (альтернативная стратегия) приведет к единственному известному заранее результату. Второе — вероятностные задачи (их также называют задачами в условиях риска), когда могут быть получены разные результаты, причем они заранее известны или может быть оценена вероятность их достижения. Третье — задачи для условий неопределенности (неопределенные задачи); в этом случае заранее неизвестно, какие результаты реальны. Однако обычно имеется представление о пределах области значений, в которой они находятся. В последнем случае, если это оказывается возможным, применяют адаптивные стратегии, использующие ту информацию, которая поступает в процессе решения.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > теория решений

  • 8 математическая теория оптимальных процессов

    1. mathematical theory of optimal processes

     

    математическая теория оптимальных процессов
    Дисциплина, рассматривающая математические задачи автоматического регулирования, прежде всего в технических системах (таких, как ракета, самолет и др.). Но экономистами делаются попытки применить некоторые понятия этой теории и к управлению экономическими процессами, в частности, при теоретическом анализе процессов перспективного развития и планирования, при построении и решении задач динамического программирования. Сущность оптимального автоматического регулирования состоит в том, что оно не только обеспечивает компенсацию возмущений, воздействующих на объект управления (как это делает, например, прибор, известный под названием автопилот), но и стремится к нахождению наилучшей, оптимальной траектории движения. Главный результат теории — всемирно известный «принцип максимума» выдающегося математика Л.С.Понтрягина, сформулированный так: для многих управляемых систем может быть построен такой процесс регулирования, при котором само состояние системы в каждый данный момент подсказывает наилучший с точки зрения всего процесса способ действий. Если рассматривать самолет как точку, движущуюся в пространстве, то это простой объект. В каждый данный момент можно определить его положение в пространстве: допустим, широту, долготу и высоту над уровнем моря; эти три величины в данном случае его фазовые координаты. Те или иные углы поворота рулей самолета, которыми определяется направление его полета, — управляющие параметры. Совокупность этих параметров (ограниченных определенной областью управления) называется собственно управлением, траектория полета — фазовой траекторией. Задача оптимального управления состоит в том, чтобы выбрать такие из названных величин, которые обеспечат наиболее быстрый прилет самолета на место (впрочем, могут быть и другие критерии, тогда решения задачи будут иными, например, перелет с наименьшим расходом горючего). Принцип максимума Понтрягина определяет математические условия, необходимые для того, чтобы управление оказалось оптимальным, причем без предварительного определения оптимальной траектории, а путем последовательного регулирования данного процесса. Задачи экономики, основанные на М.т.о.п., намного сложнее технических задач. Это выражается хотя бы в том, что экономические процессы характеризуются не тремя, а огромным числом фазовых координат, многими управляющими параметрами. Однако исследования в этой области имеют, как считается, хорошие перспективы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > математическая теория оптимальных процессов

  • 9 инженерные вычисления

    фраз. engineering computation

    Since electronic computers were first used in scientific and engineering computation, solving primarily mathematical problems, many of the terms came from this mathematical background. — Поскольку электронные компьютеры впервые были использованы в научных и инженерных расчетах, решая в первую очередь математические задачи, многие из терминов пришли из математических вычислений.

    Дополнительный универсальный русско-английский словарь > инженерные вычисления

  • 10 инженерные расчёты

    фраз. engineering computation

    Since electronic computers were first used in scientific and engineering computation, solving primarily mathematical problems, many of the terms came from this mathematical background. — Поскольку электронные компьютеры впервые были использованы в научных и инженерных расчетах, решая в первую очередь математические задачи, многие из терминов пришли из математических вычислений.

    Дополнительный универсальный русско-английский словарь > инженерные расчёты

  • 11 математический

    прил.
    математика -ĕ; математические задачи математика задачисем

    Русско-чувашский словарь > математический

  • 12 Склонение количественных числительных

    Количественные числительные не склоняются. Им не свойственны категории рода, падежа и числа. Исключение составляют числительное ein. При этом:
    1. Если оно употребляется без артикля, склоняется как неопределенный артикль, а после определенного артикля как наречие:
    Ein Schüler hat gefehlt. - Один ученик отсутствовал.
    Der eine Schüler hat gefehlt. - Один ученик отсутствовал.
    Einer hat gefehlt. / Der eine hat gefehlt. - Один отсутствовал.
    В таком случае ein, eine произносятся с ударением:
    Hinter dem Haus steht nur ein Auto. - За домом стоит только одна машина.
    Ich habe einen Zentner Kartoffeln gekauft, nicht zwei. - Я купил полцентнера картошки, а не центнер.
    Er hat ihm nur eine Tafel Schokolade gegeben. - Он дал ему только одну плитку шоколада.
    Vor vier und einem halben Jahr stand hier ein Haus. - Четыре с половиной года назад здесь стоял дом.
    Ein Umfang von ein bis drei Seiten kann ich in zwei Stunden übersetzen. - Объём от одной до трёх страниц я могу перевести за два часа.
    Ein Haus kostet hier von einer bis zu vielen Millionen. - Дом стоит здесь от одного до нескольких миллионов.
    Таким образом, склоняется чаще второе числительное.
    1. Числительное ein в качестве определения перед bis и oder + zwei обычно не склоняется:
    Er will nur ein oder zwei Tage bleiben. ( возможно: einen Tag oder zwei Tage) - Он хочет остаться только на один или два дня.
    Gedulden Sie ein bis zwei Tage. - Потерпите один-два дня.
    Er muss ein oder zwei Wochen warten. - Ему надо подождать 1 или 2 недели.
    Das Päckchen hat ein Gewicht von ein bis zwei Kilogramm. - Бандероль весит от одного до двух килограммов.
    3. Не получает окончания ein перед дробным числительным и словом Uhr:
    Ein Fünftel multipliziert mit ein Drittel … - Одну пятую умножить на одну треть …
    Wir treffen uns um ein Uhr. - Мы встретимся в час.
    4. Склоняется ein в конце составного числительного, когда ein является определением и стоит после сотен и тысяч и чаще всего союза und. Следующее за числом существительное стоит в единственном числе:
    Das Buch hat hundertund eine Seite. - В книге сто одна страница.
    Er hat ein Gewicht von hundertund einem Kilogramm. - Его вес – сто один килограмм.
    Das Boot kostet zweitausendund ein Euro. - Лодка стоит две тысячи один евро.
    Das war eine Geschichte aus Tausendund einer Nacht. - Это был рассказ из книги „Тысяча и одна ночь“.
    5. Существительное может стоять и во множественном числе. Ein в таком случае не склоняется, а und чаще опускается:
    Das war ein Treffen mit hundert(und) ein Studenten. - Это была встреча со сто одним - студентом.
    6. Если числительное ein употребляется с определённым артиклем, оно имеет окончания прилагательного после определённого артикля (слабого склонения):
    Nach dem Streit sprach der eine nicht mehr mit dem anderen. - После ссоры один уже больше не разговаривал с другим.
    Im Gegensatz zu dem einen wird oft der andere genannt. - В противоположность одному часто в пример ставят другого.
    Im Laufe dieses einen Jahres hat sie viel Geld verdient. - В течение одного этого года она заработала много денег.
    7. Количественное числительное ein в качестве самостоятельного числительного имеет окончание определенного артикля:
    Nur einer von zehn Studenten war anwesend. - Присутствовал только один из десяти студентов.
    Mit nur einem allein kann man keinen Unterricht machen. - Только с одним человеком занятие проводить невозможно.
    8. Наряду с ein отчасти и другие числительные в генитиве и дативе имеют окончания:
    zwei и drei  склоняются только в генитиве и дативе, если перед ними нет артикля или местоимения:
    Но: die Teilnahme dieser / der zwei Schüler - участие этих двух учеников
    innerhalb dreier banger Minuten - в течение трёх тревожных минут
    Wir begrüßen die Anwesenheit zweier (dreier) Präsidenten. - Мы приветствуем двух (трёх) присутствующих президентов.
    Sie hatte viele Enkel: mit zweien (dreien) hatte sie ständig Kontakt. - У нее было много внуков: с двумя (тремя) она поддерживала постоянную связь.
    Но: Innerhalb dieser drei bangen Minuten wurden seine Haare grau. - В течение этих трёх тревожных минут его волосы поседели.
    • числительные от 2 до 12 в дативе могут иметь окончание -en, если они употребляются самостоятельно (без существительного), особенно в пословицах, литературе:
    Was zweien zu weit, ist dreien zu eng. - Где двоим просторно, троим тесно.
    Das Kind ist auf allen vieren gekrochen. - Ребёнок полз на четвереньках.
    Die Soldaten marschierten zu sechsen. (в разговорной речи возможно zu sechst) - Солдаты маршировали в колонне по шесть человек.
    Ich habe gestern mit zweien aus der Seminargruppe gesprochen. - Я вчера разговаривал с двумя из семинарской группы.
    Er fuhr mit achten (mit 8 Pferden). - Он ехал в упряжке из восьми лошадей.
    Zu zweien означает по два / парами (paarweise), zu zweit количество лиц – вдвоём:
    Die Kinder gehen zu zweien über die Straße. - Дети переходят улицу по двое / парами.
    Wir gingen zu zweit in den Wald. - Мы пошли в лес вдвоём.
    Окончание -en может отсутствовать, за исключением устойчивых выражений:
    Mit acht Kamelen ist die Karawane gestartet, mit vier(en) ist sie zurückgekehrt. - Караван отправился в путь на восьми верблюдах, а возвратился на четырёх.
    9. Все остальные количественные числительные от 13 до 999 999 не склоняются.
    Если hundert и tausend обозначают точное число, то есть являются количественными числительными и стоят перед существительным, то они не склоняются и пишутся с малой буквы:
    hundert Zigaretten - сто сигарет
    mehr als hundert Bücher - более ста книг
    der dritte Teil von tausend - третья часть тысячи
    Если hundert / Hundert и tausend / Tausend обозначают неопределённое множество, они по новым правилам пишутся с большой или малой буквы. При этом они не склоняются, если за ними следует существительное:
    viel(e) / mehrere hundert / Hundert Bücher - много сотен книг
    einige tausend / Tausend Menschen - несколько тысяч человек
    ein paar tausend / Tausend Zuschauer - несколько тысяч зрителей
    Viele tausend / Tausend Besucher haben das Konzert besucht. - Много тысяч зрителей посетило концерт.
    Einige tausende / Tausende saßen im Saal. - Несколько тысяч людей сидели в зале.
    Es starben zu Tausenden/tausenden. - Умирали тысячами.
    Вместе пишется и числительное с aber-:
    Am Himmel strahlten hundert / Hundert und aberhundert / Aberhundert Sterne. - На небе сверкали сотни сотен звёзд.
    При указании числа hundert / Hundert и tausend / Tausend в номинативе и аккузативе множественного числа могут не склоняться, если другое слово показывает падеж:
    Viele hundert(e) / Hundert(e) kamen zur Veranstaltung. - Много тысяч / Тысячи пришли на мероприятие.
    При указании числа hundert / Hundert и tausend / Tausend в генитиве множественного числа склоняются как существительное, если другое слово (например, vieler) показывает падеж:
    Wir erwarteten die Beteiligung vieler tausende / Tausende. - Мы ожидали участия многих тысяч (человек).
    Если другое слово не показывает падеж, числительное склоняется как прилагательное:
    Wir erwarteten die Beteiligung tausender / Tausender. - Мы ожидали участия тысяч (человек).
    Hundert / hundert и Tausend / tausend склоняются по принципу сильного склонения, die Million, die Milliarde – как существительные женского рода:
    Seit dem Erdbeben leben noch hunderte / Hunderte in Baracken / Zelten. - После землетрясения сотни еще живут в бараках / палатках.
    Zum Oktoberfest kommen tausende / Tausende nach München. - На фестиваль пива „Октоберфест“ в Мюнхен приезжают тысячи.
    Bei der nächsten Demonstration rechnet die Polizei mit Zehntausenden. - Полиция считает, что на следующую демонстрацию придут десятки тысяч.
    Viele tausende / Tausende von Schülern besuchten das Konzert. - Многие тысячи школьников посетили концерт.
    An den Wahlen nahm eine Million (nahmen zwei Millionen) Menschen. - В выборах принял участие один миллион (приняли участие два миллиона)человек.
    9. Числительные с окончанием -er склоняются:
    Für den Automaten fehlt ihr ein Zehner (10 Cent). - Чтобы позвонить по телефону, ей не хватает монеты, достоинством в 10 центов.
    Man spricht von dem raschen Wirtschaftswachstum in den Fünfzigern / 50er Jahren. - Говорят о быстром экономическом росте в пятидесятых / 50-х годах.
    Bewunderswert war die sportliche Leistung eines Sechzigers. - Поразительны были спортивные успехи мужчины, которому было 60-70 лет.
    10. Числительные, начиная с 1 000 000, относятся к женскому роду (в номинативе множественного числа имеют окончание -en):
    zwei Millionen два миллиона, drei Milliarden три миллиарда, vier Billionen четыре триллиона

    Грамматика немецкого языка по новым правилам орфографии и пунктуации > Склонение количественных числительных

  • 13 оперативно-календарное планирование

    1. production scheduling

     

    оперативно-календарное планирование
    Обеспечение синхронной работы взаимодействующих участков для надежного функционирования всего экономического объекта (цеха, предприятия) в целом. Математические задачи О.-к.п. преимущественно решаются на основе моделей теории расписаний и управления запасами. При этом технологические маршруты обработки расчленяются на отдельные звенья, выступающие по отношению друг к другу как поставщики и потребители, и создаются буферные емкости для промежуточного хранения запасов ресурсов и продуктов. Результатом расчетов должны быть оптимальные (как правило, сменные) задания на выполнение необходимых работ, формирование привязанных к точным датам заказов другим экономическим объектам. Существенно различается О.-к.п. производства крупных единичных изделий (строительство кораблей, зданий), где для этого используются методы сетевого планирования и управления, массового дискретного производства (здесь главное — нахождение оптимального цикла или ритма), непрерывного производства, серийного и мелкосерийного производства. В О.-к.п. нашел применение ряд методов динамического программирования.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > оперативно-календарное планирование

  • 14 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 15 исследование операций

    1. OR
    2. operations research
    3. operational research

     

    исследование операций

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    исследование операций
    Прикладное направление кибернетики, используемое для решения практических организационных (в том числе экономических) задач. Это — комплексная научная дисциплина. Круг проблем, изучаемых ею, пока недостаточно определен. Иногда И.о. понимают очень широко, включая в него ряд чисто математических методов, иногда, наоборот, очень узко — как практическую методику решения с помощью экономико-математических моделей строго определенного перечня задач. Главный метод И.о. — системный анализ целенаправленных действий (операций) и объективная (в частности, количественная) сравнительная оценка возможных результатов этих действий. Например, расширение выпуска продукции на заводе требует одновременного и взаимосвязанного решения множества частных проблем: реконструкции предприятия, заказа оборудования, сырья и материалов, подготовки рынка сбыта, совершенствования технологии, изменений системы оперативно-производственного планирования и диспетчирования, организационной перестройки, перемещения руководящих работников и т.д. При анализе возможных последствий принимаемых решений приходится учитывать такие факторы, как неопределенность, случайность и риск. К решению столь сложных задач привлекают экономистов, математиков, статистиков, инженеров, социологов, психологов и др., поэтому одной из особенностей И.о. считают его междисциплинарный комплексный характер. Операционные исследования прежде всего предназначены для предварительного количественного обоснования принимаемых решений, поскольку они, как видно из примеров, очень сложны, требуют больших затрат и, главное, могут реализоваться многими способами (эти способы называют стратегиями или альтернативами). Кроме обоснования самих решений И.о. позволяет сравнить возможные варианты (альтернативы) организации операции, оценить возможное влияние на результат отдельных факторов, выявить «узкие места», т.е. те элементы системы, нарушение работы которых может особенно сильно сказаться на успехе операции и т.д. Таким образом, сущность задач И.о. — поиск путей рационального использования имеющихся ресурсов для реализации поставленной цели. Количественные методы И.о. строятся на основе достижений экономико-математических и математико-статистических дисциплин (теории массового обслуживания, оптимального программирования и т.д.). Разные математические методы применяются (в тех или иных комбинациях) при решении различных классов задач. Среди важнейших классов задач И.о. можно назвать задачи управления запасами, распределения ресурсов и назначения (распределительные задачи), задачи массового обслуживания, задачи замены оборудования, упорядочения и согласования (в том числе теории расписаний), состязательные (например, игры), задачи поиска и др. Среди применяемых методов — математическое программирование (линейное, нелинейное и т.п.), дифференциальные и разностные уравнения, методы теории графов, марковские процессы, теория игр, теория (статистических) решений, теория распознавания образов и ряд других. Считается, что И.о. зародилось накануне второй мировой войны, когда в Англии на одной радиолокационной станции была создана группа специалистов для решения технических задач с помощью математики. Они сосредоточили внимание на сравнении эффективности путей решения задач, поиске оптимального решения. Участие в этой группе представителей разных специальностей предопределило комплексный, или, как теперь принято говорить, системный подход. В настоящее время в этом направлении работают сотни исследовательских учреждений и групп в десятках стран. Организованы общества И.о., объединяемые международной федерацией (ИФОРС International Federation Of Operational Research Societies). Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т.А.Саати: «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами…»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > исследование операций

  • 16 алгоритм

    1. Algorithmus

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > алгоритм

  • 17 алгоритм

    1. algorithm
    2. ALG
    3. -

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    1 Алгоритм - однозначное описание последовательности операций над исходными данными (из некоторой совокупности возможных исходных данных), направленной на получение результата, полностью определяемого этими исходными данными.

    Источник: МИ 2174-91: Рекомендация. Государственная система обеспечения единства измерений. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения

    Русско-английский словарь нормативно-технической терминологии > алгоритм

  • 18 теория игр

    1. game theory

     

    теория игр
    Метод моделирования, используемый для оценки воздействия решения на конкурентов.
    [ http://tourlib.net/books_men/meskon_glossary.htm]

    теория игр
    Раздел современной математики, изучающий математические модели принятия решений в так называемых конфликтных ситуациях (т.е. ситуациях, при которых интересы участников либо противоположны и тогда эти модели называются «антагонистическими играми», либо не совпадают, хотя и не противоположны, и тогда речь идет об «играх с непротивоположными интересами«). Основоположники теории Дж. фон Нейман и О.Моргенштерн попытались математически описать характерные для рыночной экономики явления конкуренции как некую «игру«. В наиболее простом случае речь идет о противоборстве только двух противников, например, двух конкурентов, борющихся за рынок сбыта (о дуополии). В более сложных случаях в игре участвуют многие, причем они могут вступать между собой в постоянные или временные коалиции, союзы. Игра двух лиц называется парной; когда в ней участвуют n игроков — это «игра n — лиц«, в случае образования коалиций игра называется «коалиционной«. Суть игры в том, что каждый из участников принимает такие решения (т.е. выбирает такую стратегию действий), которые, как он полагает, обеспечивают ему наибольший выигрыш или наименьший проигрыш, причем этому участнику игры ясно, что результат зависит не только от него, но и от действий партнера (или партнеров), иными словами, он принимает решения в условиях неопределенности. Эти решения отражаются в таблице, которая называется матрицей игры, или платежной матрицей. Одной из задач Т.и. является выяснение того, возможно ли, и если возможно, то при каких условиях, некоторое равновесие (компромисс), в наибольшей степени устраивающее всех участников. При этом часто обнаруживается такая точка ( см.»седловая точка«), в которой достигается подобное равновесие. Принципиальным достоинством Т.и. считают то, что она расширяет общепринятое понятие оптимальности, включая в него такие важные элементы, как, например, компромиссное решение, устраивающее разные стороны в подобном споре (игре). На практике же игровые подходы используются отечественными экономистами при разработке моделей, в которых учитываются интересы различных звеньев экономики. Кроме того, математические приемы Т.и. могут применяться для решения многочисленных практических экономических задач на промышленных предприятиях. Например, для выбора оптимальных решений в области повышения качества продукции или определения запасов. «Противоборство» здесь происходит в первом случае между стремлением выпустить больше продукции (затратить на нее, в расчете на единицу, меньше труда) и сделать ее лучше, т.е. затратить больше труда, во втором случае — между желанием запасти ресурсов побольше, чтобы быть застрахованным от случайностей, и запасти поменьше, чтобы не замораживать средства. Следует отметить, что подобные задачи решаются и другими экономико-математическими способами. И это не случайно. Многие задачи Т.и. могут быть сведены, например, к задачам линейного программирования, и наоборот. Классификация игр пока не может считаться разработанной. Перечень видов игр, рассматриваемых в словаре, см. в статье Игра. См. также: Выигрыш, Гурвица критерий, Дерево игры, Игрок, Коалиция, Максимакс, Максимин, Матрица выигрышей, Матрица игры, Минимакс, Платежная матрица, Платежная функция, Побочный платеж, Решение игры, Сэвиджа критерий, Седловая точка игры, Смешанная стратегия, Стратегия, Характеристическая функция, Ход, Цена игры, Чистая стратегия, Ядро игры.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > теория игр

  • 19 алгоритм

    1. algorithme

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > алгоритм

  • 20 динамическое программирование

    1. dynamic programming
    2. DP

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > динамическое программирование

См. также в других словарях:

  • Математические задачи на шахматной доске — Математические задачи на шахматной доске. Шахматная доска с расположенными на ней фигурами и ходы фигур послужили удобной моделью, породившей ряд математических задач, в том числе и таких, которыми занимались известные математики. Наиболее… …   Википедия

  • АСТРОНОМИИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — математические задачи, возникающие при исследованиях небесных объектов. Для решения ряда таких задач разработаны специальные методы, к рые нашли применение и в других разделах науки. С другой стороны, в астрономии широко используется… …   Математическая энциклопедия

  • КЛАССИЧЕСКОЙ НЕБЕСНОЙ МЕХАНИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи, возникающие в астрономии в связи с изучением движения небесных тел в гравитационном поле. Классическими объектами, изучаемыми небесной механикой, являются планеты и спутники Солнечной системы. Движение звезд и звездных систем изучает… …   Математическая энциклопедия

  • ОКЕАНОЛОГИИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — математические задачи в области физики, химии, геологии и биологии океана. В физике океана это прежде всего задачи геофизич. гидродинамики (определяемой как гидродинамика природных течений вращающихся бароклинных стратифицированных жидкостей).… …   Математическая энциклопедия

  • СТАТИСТИЧЕСКОЙ ФИЗИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи, возникающие при применении математич. аппарата в статистич. физике. С. ф. м. з. в основном связаны с двумя направлениями статистич. теории: с равновесной статистич. механикой, основные математич. проблемы к рой связаны с разработкой… …   Математическая энциклопедия

  • АСТРОФИЗИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — круг задач теоретич. астрофизики, в к рых широко используются математич. методы исследования. Основной предмет теоретич. астрофизики составляет истолкование результатов наблюдений с целью изучения строения объектов, наблюдаемых во Вселенной, а… …   Математическая энциклопедия

  • ГИДРОДИНАМИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи для систем уравнений, к рыми описываются механич. модели течений жидкости и ее взаимодействия с ограничивающими поверхностями. Для теоретич. описания часто встречающихся турбулентных течений применяются модели частного характера (в… …   Математическая энциклопедия

  • АЭРОДИНАМИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи, связанные с решением основных уравнении аэродинамики, к рые точно описывают законы движения газообразной среды и ее силового взаимодействия с движущимися в этой среде твердыми телами. Исключение составляет турбулентность, для к рой не… …   Математическая энциклопедия

  • ГЕОФИЗИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи, возникающие при анализе физич. явлений, изучаемых в связи с исследованиями строения Земли. В зависимости от природы изучаемых физич. явлений различают следующие виды геофизич. исследований: грави разведку, основанную на изучении… …   Математическая энциклопедия

  • МЕТЕОРОЛОГИИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи в области физики, химии и биологии атмосферы, решаемые с помощью математич. методов. Большинство М. м. з. метеорологии характеризуются сложностью и большим объемом перерабатываемой информации, поэтому для решения этих задач наряду с… …   Математическая энциклопедия

  • СТАНДАРТИЗАЦИИ И УНИФИКАЦИИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи, в к рых требуется определить оптимальные ряды изделий и их составных частей. Оптимальный ряд изделий это такой набор различных типов изделий, взятых из исходного ряда, к рый позволяет удовлетворить все заданные виды спроса в требуемом… …   Математическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»